
C
Appendix C
Obtaining Configuration Information

Obtaining ISA Configuration Information C-1

Obtaining EISA Configuration Information C-2
Getting the Real Mode Workspace . C-2
Locking the Memory . C-3
Making a Real Mode BIOS Call . C-3
Accessing the Configuration Information C-6
Unlocking the Memory . C-6

Obtaining MCA Configuration Information C-7
Scanning Slots for the Adapter’s ID . C-7
Determining the Slot to Use . C-8
Accessing the Configuration Information C-10
Deselecting the Card . C-10

Registering the Configuration Information C-11

Appendix C • Obtaining Configuration Information

Obtaining ISA Configuration Information

The ISA BUS does not provide a standardized way to obtain hardware
configuration information. Individual slots cannot be queried to
determine the adapter type which is installed, nor can adapters be
enabled or disabled in a uniform way. Drivers must utilize the
parameters passed from the ParseDriverParameters call (parameters
supplied in the load command line), then verify that the hardware is
present and operational as specified. Some adapters may allow all
other parameters to be obtained by I/O commands once a primary I/O
port is identified, but drivers will still have to interpret the fields
obtained this way.

Version 1.00 C – 1

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Obtaining EISA Configuration Information

NetWare device drivers on DOS-based servers can obtain EISA
information by the following procedure:

• get real mode workspace
• lock the memory
• make the EISA BIOS call
• access the configuration information
• unlock the memory

Each step in this procedure is detailed in the remainder of this section.

Getting the Real Mode Workspace

In order to read EISA configuration information, the driver must
allocate a block of memory addressable in both real and protected mode.
The EISA machine BIOS uses this block of memory to pass
configuration information to the driver.

To obtain this block of memory, the driver must use the operating
system routine GetRealModeWorkSpace. Before doing this, however,
the driver must allocate five storage locations. These locations can be
reserved in the driver’s data area as follows:

WorkSpaceSize dd 0 ;block size
WorkSpaceRealModeOffset dw 0 ;block offset
WorkSpaceRealModeSegment dw 0 ;block segment
WorkSpaceProtectedModeAddress dd 0 ;block address
WorkSpaceSemaphore dd 0 ;block semaphore

WorkSpaceSize

Size of the block of memory (in bytes).

WorkSpaceRealModeOffset

Offset of the real mode memory address of the block.

WorkSpaceRealModeSegment

Segment of the real mode memory address of the block.

WorkSpaceProtectedModeAddress

Protected mode logical address of the block.

WorkSpaceSemaphore

Pointer to a semaphore structure. The driver uses the semaphore
to "lock" the memory for its exclusive use while reading the EISA

configuration information.

C – 2 Version 1.00

Appendix C • Obtaining Configuration Information

Note: Another way to reserve this space is to allocate it on the stack,
since it will only be used for this process, and can be discarded when
finished. This is a very efficient way to deal with this particular
requirement, since no Alloc call or resource tag, etc. is required.

The driver passes the addresses of the storage locations on the stack
when calling GetRealModeWorkSpace. This procedure provides the
driver with access to the special block of memory by filling in the
storage locations with the needed values. On return, the driver must
clean up the stack.

push OFFSET WorkSpaceSize
push OFFSET WorkSpaceRealModeOffset
push OFFSET WorkSpaceRealModeSegment
push OFFSET WorkSpaceProtectedModeAddress
push OFFSET WorkSpaceSemaphore

call GetRealModeWorkSpace
add esp, 5*4

Locking the Memory

During the EISA configuration read operation, the driver must have
exclusive use of the special memory block. It must "lock" the memory
block by calling the CPSemaphore function, as shown in the following
example:

push WorkSpaceSemaphore ;load semaphore
call CPSemaphore ;lock work space
add esp, 1*4 ;adjust stack

Making a Real Mode BIOS Call

In order for the EISA machine BIOS to pass the configuration data for
the selected physical card back to the driver, the driver must make a
real mode call to the EISA BIOS. The driver must allocate memory for
two structures, InputParms and OutputParms.

Note: These structures can also be allocated on the stack.

Version 1.00 C – 3

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

InputStructure struc
IAXRegister dw ?
IBXRegister dw ?
ICXRegister dw ?
IDXRegister dw ?
IBPRegister dw ?
ISIRegister dw ?
IDIRegister dw ?
IDSRegister dw ?
IESRegister dw ?
IIntNumber dw ?

InputStructure ends

OutputStructure struc
OAXRegister dw ?
OBXRegister dw ?
OCXRegister dw ?
ODXRegister dw ?
OBPRegister dw ?
OSIRegister dw ?
ODIRegister dw ?
ODSRegister dw ?
OESRegister dw ?
Oflags dw ?

OutputStructure ends

InputParms InputStructure <>
OutputParms OutputStructure <>

Before making the DoRealModeInterrupt call, the driver must fill in the
InputParms structure as follows:

IAXRegister
The read configuration parameter 0D801h (See the EISA BIOS call
information supplied by the EISA computer manufacturer).

ICXRegister

The adapter slot and block of configuration data to read. CL is the
slot and CH is the block.

IDSRegister

The real mode segment address of where to put the block of data.
This value was returned in the WorkSpaceRealModeSegment
variable by GetRealModeWorkSpace.

ISIRegister

The real mode memory offset of where to put the block of data. This
value was returned in the WorkSpaceRealModeOffset variable by
GetRealModeWorkSpace.

IIntNumber

The interrupt number. In this example, it is interrupt 15h.

C – 4 Version 1.00

Appendix C • Obtaining Configuration Information

After filling out the InputParms structure, the driver pushes the offsets
of InputParms and OutputParms and then calls DoRealModeInterrupt,
as shown below.

push OFFSET OutputParms ;output registers
push OFFSET InputParms ;input registers
call DoRealModeInterrupt ;perform real mode int
add esp, 2*4 ;restore stack

Checking for Errors

To determine if DoRealModeInterrupt executed without errors, compare
EAX to 0. If the value is 0, the routine executed successfully.

The driver must also detect errors the BIOS routine may have had. It
does this by checking the OAXRegister field in the OutputParms

structure. To determine if the BIOS routine executed without errors,
compare the OAXRegister field to 0. If the value is 0, the routine
executed successfully. A sample of the error checking code required
follows:

or eax, eax ;successful?
jnz IntNotValidErrorExit ;jmp if OS error
cmp BYTE PTR OutputParms.OAXRegister+1, 0
jne IntNotValidErrorExit ;jmp if BIOS error

Note: The error handling routines for the above errors must unlock the
block of memory by calling CVSemaphore.

Version 1.00 C – 5

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Accessing the Configuration Information

At this point, the driver has access to the configuration of the adapter
set by the user in the EISA configuration utility. The driver accesses
this information using the logical address (protected mode address) of
the special memory block that was returned during the GetRealMode-

WorkSpace call. A sample of typical driver processing follows:

mov esi, WorkSpaceProtectedModeAddress ;data pointer
mov cl, BYTE PTR [esi+INTERRUPTOFFSET] ;get interrupt
mov SaveInterrupt, cl ;save

Note: INTERRUPTOFFSET is defined in the EISA spec.

Each configuration block contains different information (interrupts,
memory, etc.). If the first block read does not contain the appropriate
information, keep reading blocks by incrementing CH in the
InputParms structure and calling DoRealModeInterrupt again. Read
blocks until the information is obtained or until INT 15h returns an 81h
in AH of the OutputParms structure.

Unlocking the Memory

Finally, the driver must unlock the special memory block that the EISA
configuration data is located in. This is accomplished by making a call
to the CVSemaphore function, as indicated in the following example:

push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, 1*4 ;clean up stack

C – 6 Version 1.00

Appendix C • Obtaining Configuration Information

Obtaining MCA Configuration Information

This section describes the procedure for obtaining hardware
configuration information for a Micro Channel MSL adapter. This
information is used by the driver’s initialization procedure to initialize
the hardware and to register the adapter with the NetWare OS.

The procedure for obtaining MCA configuration information is outlined
below:

• scan the slots for the MSL ID
• determine which slot to use
• access the configuration information
• deselect the card
• register the configuration with the OS

The remainder of this section describes this procedure in more detail.
Each step is illustrated with sample code.

Scanning Slots for the Adapter’s ID

The first step in obtaining the MSL adapter’s configuration is to scan
through all Micro Channel adapter slots, searching for adapter IDs
supported by the MSL driver. The number of adapters with matching
IDs and the corresponding slot numbers are stored in a slot options
table for a later step. If no adapters with matching IDs are found, the
MSL driver should display an error message stating that no adapters
were found, and exit back to the OS with a completion code of non-zero.

The following definitions are used in the example on the facing page.
For a more detailed explanation of the ports in the Micro Channel
architecture, refer to the IBM Personal System/2 Hardware Interface
Technical Reference.

SlotSelectRegister equ 96h
POS0 equ 100h
POS1 equ 101h
POS2 equ 102h

The driver must fill in a slot options table for the AdapterOptions-
Structure. This structure is required by the ParseDriverParameters
routine. The slot options table has the following format:

SlotCount dd 0 ;number of valid slots
SlotList dd 8 dup (0) ;up to 8 slots possible

The address of the slot options table is placed in the appropriate field
of the AdapterOptionStructure for the ParseDriverParameters routine.

AdapterOptions AdapterOptionStructure <SlotCount>

Version 1.00 C – 7

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

xor esi, esi ;Init card counter
mov cl, 7 ;3rd bit must be set

;Start with slot 0

ScanSlots:

inc cl ;next slot
cmp cl, 10h ;are we done?
jz short DoneScanningSlots ;jump if so

mov al, cl
out SlotSelectRegister, al ;select card slot

mov dx, POS0 ;get high byte of
in al, dx ; signature
mov ah, al
mov dx, POS1 ;get low byte of
in al, dx ; signature
xchg al, ah

cmp ax, NE232ID ;Is it our card?
jne ScanSlots ;jump if not

mov dx, POS2 ;get config port
in al, dx ;get configuration

test al, 01 ;Is card enabled?
jz ScanSlots ;jump if not

movzx eax, cl ;get slot number
btr eax, 3 ;reset bit 3
inc eax ;slots are 1 relative
mov SlotList [esi*4], eax ;put slot # in table
inc esi ;bump board count

jmp ScanSlots ;Keep looking

DoneScanningSlots:

xor al, al
out SlotSelectRegister, al ;De-select card
or esi, esi ;Any boards found?
jz NoSlotsWithMyBoard ;jump if not

mov SlotCount, esi ;Record number of boards

Determining the Slot to Use

The next step is for the MSL driver (by means of the OS routine
ParseDriverParameters) to get the slot of the adapter the MSL driver
should interrogate to get the hardware configuration. Several
parameters should be passed to the OS routine ParseDriverParameters:

• the load module ScreenHandle

(see the driver initialization specification for more detail)
• the load CommandLine pointer

(see the driver initialization specification for more detail)

C – 8 Version 1.00

Appendix C • Obtaining Configuration Information

• a bit map indicating that the slot needs to be parsed
(see NeedsBitMap under the ParseDriverParameters description)

• the address to any frame description
(null in the case of all MSL drivers)

• the address of any configuration limitations
(null in the case of all MSL drivers)

• the address of the AdapterOptions structure
(containing the address of the slot options table)

• the address of the driver configuration table
(null in the case of all MSL drivers)

• the address of the IOConfigurationStructure

The sample below shows how you might parse which board in which
slot to use.

Example of the parse slot number code:

DriverInitialize proc

CPush
mov ebp,esp
pushfd
cli

push [ebp + Parm1] ;Screen ID
push [ebp + Parm2] ;Command line
push NeedsIOSlotBit ;Parse for slot
push 0 ;No FrameTypeDesc
push 0 ;No ConfigLimits
push OFFSET AdapterOptions
push 0 ;No ConfigTable
push OFFSET IOConfiguration ;IOConfigStruct

call ParseDriverParameters
add esp, 8 * 4

or eax, eax
jnz ErrorParsingIOParameters

Note that even if the MSL driver finds a supported adapter in a slot,
another driver could be in control of the adapter. The OS routine
ParseDriverParameters would then return a non-zero value (CCode in
EAX) telling the MSL driver not to use any adapter. The MSL driver
would then display a message indicating that no adapter was selected,
and exit to the OS.

If ParseDriverParameters returns successfully, the OS parsed slot value
will be placed in the IOConfiguration structure. Based on that value,
the MSL driver can now interrogate the selected adapter for its
hardware configuration as described in the following section.

Version 1.00 C – 9

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Accessing the Configuration Information

The example below illustrates these steps. The following is the code
from the HNE232 driver. All adapters will have specific information for
each adapter in the POS option select data bytes.

;Use the slot chosen to determine Memory base, I/O base and interrupt

movzx eax, IOConfiguration.CSlot ;Get slot that we are to use
dec eax ;Make it zero-relative
bts eax, 3 ;PS/2 needs bit 3 set
out SlotSelectRegister, al ;Select the card slot

mov dx, POS2 ;Get config port

in al, dx ;Get configuration
movzx edi, al ;Copy config
and edi, 0eh ;Get bits 3-1, use as index

shr edi, 1 ;Adjust for table index
dec edi ;Option 0 is no option
shl edi, 2
mov eax, RAMTable[edi] ;Get memory location used
mov IOConfiguration.CMemoryDecode0, eax
mov IOConfiguration.CMemoryLength0, 800h ;Store length of memory

shr edi, 1 ;Adjust for table index
mov cx, IOTable[edi] ;Look up IO address
mov IOConfiguration.CIOPortsAndLengths, cx

in al, dx ;Get configuration again
movzx edi, al ;Copy configuration
shr edi, 4 ;Get IRQ setting
and edi, 7 ;Only keep the lower 2 bits

mov al, IRQTable[edi] ;Look up interrupt level
mov IOConfiguration.CInterrupt, al ;Save our int value

xor al, al ;De-select card
out SlotSelectRegister, al

mov IOConfiguration.CInterrupt + 1, -1
mov WORD PTR IOConfiguration.CDMAUsage, -1

Deselecting the Card

Remember to de-select the card when finished reading the hardware
configuration information (shown in the example above).

C – 10 Version 1.00

Appendix C • Obtaining Configuration Information

Registering the Configuration Information

The final step registers the hardware configuration with the NetWare
operating system.

;Register Hardware Options to see if any conflicts

push 0
push OFFSET IOConfiguration
call RegisterHardwareOptions
add esp, 2 * 4

or eax, eax
jnz ErrorRegisteringHardwareOptions

If the OS rejects the registration of the hardware configuration, the
MSL driver must terminate the initialization process, and display a
message indicating rejection of the hardware configuration. The MSL
driver initialization routine would then set a non-zero return code and
exit to the OS.

See the driver template in Appendix E for more details on how to
handle errors during MSL driver initialization.

Version 1.00 C – 11

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

C – 12 Version 1.00

